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Virtual Stage is a project to use virtual reality (VR) technology as an audiovisual 

performance interface. The depth of control, modularity of design, and user immersion aim to 

solve some of the representational problems in interactive audiovisual art and the control 

problems in digital musical instruments. Creating feedback between interaction and perception, 

the VR environment references the viewer’s behavioral intuition developed in the real world, 

facilitating clarity in the understanding of artistic representation. 

The critical essay discusses of interactive behavior, game mechanics, interface 

implementations, and technical developments to express the structures and performance 

possibilities. This discussion uses Virtual Stage as an example with specific aesthetic and 

technical solutions, but addresses archetypal concerns in interactive audiovisual art. 

The creative documentation lists the interactive functions present in Virtual Stage as 

well as code reproductions of selected technical solutions. The included code excerpts 

document novel approaches to virtual reality implementation and acoustic physical modeling of 

musical instruments.
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PART I 

CRITICAL ESSAY
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1. Introduction and Interactive Behavior 

1.1 Virtual Environments for Performance 

Interactive audiovisual art often has conflict between aesthetic and technical goals. This 

friction makes it difficult to maintain cohesion between how elements interact and how that 

interaction is perceived. By creating a feedback between interaction and perception, art 

references the behavioral intuition developed in the real world, facilitating clarity in aesthetic 

representation. 

Virtual Stage is a project to use virtual reality (VR) technology as an audiovisual 

performance interface. The depth of control, modularity of design, and user immersion aim to 

solve some of the representational problems in interactive audiovisual art. Drawing influence 

from game mechanics, modules allow for behavioral structures that are traditionally difficult to 

portray, such as reflexivity and intentionality. Additionally, the interface allows for audio 

representation through combinations of modulated acoustic physical models that are difficult to 

control with orthodox computer music interfaces. 

A standard model of VR places the participant in a first-person experience, isolated from 

the real world and any onlookers. However, in Virtual Stage, the VR hardware facilitates the 

performer to exist in the virtual world, while an additional video output displays a third-person 

view of the environment to the audience. The audience recognizes the performer on both the 

real stage and the virtual stage, allowing interactive behaviors to be directly observable (Figure 

1.1) 
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Figure 1.1 Stage orientation with controllers 

However, the entire VR environment functions as an interface for the performer to 

control objects and functions that generate sound and visuals. The audience sees the on-stage 

performer’s input to the VR controllers and the on-screen environment as output; when the live 

performer’s motions directly correlate to the virtual performer, they reinforce the viewer’s 

context for the spatiality of the virtual environment. However, the digital environment is not 

subject to the same physical limitations of input and output as in the real world. 

The performer dictates the rate and order in which the audience is introduced to new 

elements in the space; this provides some malleability of composition form, but also paces a 

natural exposition to the audience’s understanding of the environment. As new elements are 

introduced, there is both a spatial understanding of their virtual physics and an auditory 

component in the environment. This situation is similar to any interactive system, in that the 

audience develops a familiarity with the interactive behavior as they observe more correlation 

and causality. However, the development of familiarity with both the virtual instruments and 

environment reinforce each other, allowing for more complex and specific projections of 
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behavior and structure. 

The instruments are implemented modularly, such that developing each new instrument 

multiplies the possible combinations with other instruments. This widens the range of actions 

for the performer because new instruments evoke new ways to use existing instruments. 

However, this requires that the virtual interface is both intuitive and flexible for the performer 

to take advantage of the design modularity; if the input requires too much precision, the 

performer will be less likely to explore variations. 

This openness of variation and modularity of function is more representative of a game 

than a temporally bounded piece. Virtual Stage consists of a structure of interactive game 

mechanics for creating an open-ended performance. Discussion of interactive behavior, game 

mechanics, interface implementations, and technical developments express the possibilities of 

this openness and structures to manifest them. 

1.2 Framing of Interactive Systems Problems 

Temporal art often functions as a transduction between different forms of energy, 

whether they are motion, sound, visuals, and/or data. Musical instruments convert physical 

motion into sound energy in their transduction of input to output. Digital systems add a layer of 

complexity, because energy is converted between analog and digital states. This conversion has 

several repercussions based in a conceptual detachment from the physical world. When energy 

is quantized into data, removing its bounding of spatial dimensions, it gains a relatively endless 

permeability through operations of logic, math, and storage. A digital system seems to behave 

as an instrument, in that it converts input to output, but the flexibility of permutation in digital 

operations makes it difficult to observe the behavior as energy transduction. A viewer 
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understands behavior by what they observe directly, but without knowledge of the digital 

operations, they are limited in their understanding of the digital system’s behavior.1 

There are several prototypical paradigms of interactive digital arts systems, each with 

their inherent benefits and limitations to a viewer’s understanding. With a performer on stage 

at a computer and with limited visibility of the performer’s interactions, the viewer observes 

only the output of the system. A live performer’s presence predicates some purpose but 

without an observable behavior, the viewer can assume only the structural implications of 

performance itself — the performer may be actively exerting some skill, preference, or 

individuality. These exertions may impact the artistic output but without direct observation, the 

observed result may seem distanced from any interactive behavior. 

A performer with motion tracking controllers directs some correlation and/or causation 

between physical gestures and an output. The viewer directly observes the input, but they must 

extrapolate the interactive behavior from the output. If preference is given to an intended 

output, the interactivity is often constrained to make this result more achievable. The viewer 

derives understanding of the interactive behavior to the extent that these constraints maintain 

consistency; however, if constraints increase and the behavior seem to be scripted, the system 

will appear less interactive, thus limiting the representational capacity of the interaction. If the 

performer embellishes the input to dramatize its inherent qualities, the viewer could make 

erroneous assumptions about the system’s behavior.  

Digital artists often both design and perform an interactive system. With acoustic 

                                                 
1 Within the scope of audiovisual art, the audience observes of all forms of media available to the senses. A 
“viewer” observes any combination of sound, image, live performance, etc. “Art” includes any combination of 
these observable media and their perceived structures. 
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instruments, it takes some amount of musicianship to build a fine instrument, but there is no 

prerequisite that an excellent instrument designer is also an excellent performer on that 

instrument. With interactive digital systems, the artist often treats the design process as a 

performance in itself; this can detract from their actual performance, because it distorts their 

ability to recognize how the viewer would understand the system. Additionally, performance 

practice seeks to solve inherent problems and limitations in the instrument, but the artist could 

always resort to design changes to affect these changes. 

Although the input of a system may seem observable to the viewer, it is mitigated by 

how the interactive behavior is understood. A performer’s input can range from “action” to 

“interaction” or even “reaction,” depending on how much the output from the system 

influences their decisions. Observations and preconceptions color the viewer’s understanding of 

the interactivity, but the performer is similarly subject to feedback from the system. When input 

and digital behavior don’t exist in the same spatial dimensions, the correlation of input to 

output can be any mathematical or logical function, physically possible or not. An increase in 

the observability of behavior benefits both the performer’s and viewer’s understanding of the 

system. 

1.3 Control and Interface in Temporal Art 

Observations are limited by the platonic ideal of a “piece,” where art is framed within 

containers such as the time span of a performance or the spatial bounds of a stage; the viewer’s 

observations are subject to speculation about how the piece and artist exist outside these 

bounds. Similarly, the artist exerts a different form of interaction during performance than 

during designing and testing. The definition of these boundaries informs the understanding of 
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interactivity because it indicates the line between quantitative and qualitative descriptions. 

However, a digital system presents a level of abstraction of quantitative data that adds 

complexity to observing the bounds of the performance. 

The technique of physical modeling allows the retention of perceptual identities and 

behavior by simulating the mechanics of sound production rather than the acoustic properties 

of hearing.2 If a digital system structurally imitates how sound and objects behave in the real 

world, it grounds the modes of interaction to represent quantitative actions, demystifying the 

bounds of the digital system. For example, a physical model of a string instrument could have 

the same input and output behavior of a real, acoustic string instrument, so it would be easier 

to presume its interactive bounds. However, the model could be modulated in ways that are 

physically impossible (such as retuning the string tensions faster than mechanically possible). 

The digital model’s presumed bounds retain influence on the understanding of its behavior, 

even if the final output is dissimilar to the real counterpart. 

However, physical modeling presents a performance problem — when the model’s 

control parameters extend beyond the physically possible, the physical input interface is 

inherently limited. For example, Figure 1.2 shows a computer interface for a physical waveguide 

string model, modeling how vibration travels along both directions of a string. 

                                                 
2 Juraj Kojs, Stefania Serafin, and Chris Chafe, “Cyberinstruments via Physical Modeling Synthesis: Compositional 
Applications,” Leonardo Music Jornal 17 (2007): 61. 
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Figure 1.2 Interface for waveguide string with modulation 

Though the instrument is intended for the testing and generation of fixed media samples 

rather live performance in a piece, it is still subject to interface limitations. The performer 

manipulates numerical parameters of the model and oscillators modulate those parameters 

faster than a physical interface can move; some configurations are mathematically possible but 

do not make physical sense, such as making the string longer on the top than on the bottom.3 

While there is a grounding in a relationship to an instrument that is physically observable, there 

is no physical interface for simultaneously affecting all of these extended parameters. As the 

interface of the model becomes more abstracted from its physical counterpart, the potential of 

expected behavior decreases and appropriately, the output is less recognizable as a real string. 

                                                 
3 This is possible because the model is two resonating delay lines that reflect and scatter audio into each other. The 
modeled string length is represented by of the sample durations and resonant frequencies of the delay buffers; 
however, there is no mathematical requirement that these two resonators are tuned to the same frequency. 
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While this interface is limited to the changing of one parameter at a time, preset states 

allow interpolation between these captured configurations at different rates. The user can 

assemble presets into a series of states that would more closely resemble a nuanced physical 

input. However, the presets are still subject to the model’s abstraction from its physical 

counterpart, because the presets themselves are an added layer of abstraction; the interface is 

a model of physical interaction, but its interactivity is informed by the bounds of its control. 

1.4 Modular Instrument Design 

Although physical modeling simulates the mechanism of sound production, this 

structure does not represent the modularity of physical objects. Modular programming 

hierarchically abstracts functions into component parts, such that smaller, discrete modules 

comprise a larger application. Some benefits to this include economy of reusing work, division 

of labor into achievable goals, and a more clearly observable design structure.4 Efficiency is 

helpful when designing complicated systems, but modularity also allows a shift in hierarchical 

perspective to highlight how a system operates. 

Musicians are familiar with modular instrument structures because most musical 

instruments require coordinated interfacing of simultaneous input modes. For example, a 

trumpet player buzzes the mouthpiece with their lips, controls airflow with their tongue, 

operates the valves with one hand, and adjusts tuning slides with the other hand. Each of these 

inputs is modularly isolated in its function, understood conceptually, and practiced independent 

of the whole. Some components are hierarchically reducible or share commonalities, such as 

                                                 
4 Matthias Rath, “A Strategy for Modular Implementation of Physics-Based Models,” Proceedings of the 7th 
International Conference on Digital Audio Effects, October 2004, 1. 
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how the lips and tongue both coordinate with air speed generated by the diaphragm. 

Additionally, valve combinations can be practiced and reconfigured for efficiency, but are 

performed automatically when playing a musical passage; fingering combinations are already 

hierarchical aggregates of individual valves. 

The parameters in Figure 1.2 are not modularly interactive because hierarchically, they 

are managed one at a time on the same level; there is no inherent context to organize 

parameters into recognizable patterns. Similarly, the preset interpolation is limited because it 

homogenizes all parameters and doesn’t create intermediary functions in the same manner that 

a performer groups different input modes. Although the model represents a physical object, the 

interface inhibits the observability of the parameters’ physical correlation. 

1.5 Units and Data Mapping 

Computer controllers have a physical interface, but they are modeled on basic computer 

science data types. For example, a button toggles or triggers a Boolean true/false value and a 

slider outputs a range of values. These values are readily processed with standard logical and 

mathematical functions because they are inherently input as numerical values. However, 

toggles are rarely present in the physical world and real interaction is more a function of 

multiple, continuously balanced parameters; when these parameters don’t correlate to physical 

units, they lack an implication of behavior.5 A digital piano keyboard controller affords an 

overlap with piano technique and implies semitone units that hold musical context through 

spatial relationship. Regardless if the semitone scale is remapped, a piano keyboard controller 

                                                 
5 Davide Rocchesso, Federico Avanzini, Matthias Rath, Roberto Bresin, and Stefania Serafin. “Contact Sounds for 
Continuous Feedback,” Proceedings of the International Workshop on Interactive Sonification, January 2004, 1–2. 
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implies more behavior than a slider with no output because the spatial units reference the 

bounds of a performance system. 

Conversely, a physical instrument’s boundaries are defined by its spatial dimensions and 

its physical properties. The stability of physical space imparts an implication of cohesion via the 

persistence of spatial units. A sensor captures a performer’s input to the system and the data is 

bounded by both the constraints of the sensor and the system’s behavior. The data captured by 

the sensor loses some of its physical implication when abstracted into a scale without physical 

units. The observability of this data relies on the interactive behavior to indicate the spatiality in 

a physical representation. 

Contrastingly, symbol values such as words or characters can represent units but also are 

meaningful in qualitative statements.6 A symbol does not correlate to a physical dimension but 

requires a physical context to signify a physical relationship. Notated music parallels this 

limitation with a boundary of meaning between quantifiable acoustic representation and 

syntactical designations represented by language. Words in music notation often function as 

comparators (such as “faster” or “quieter”) or they consolidate an idea that is inefficient to 

quantify precisely. 

The boundary of quantitative and qualitative designations is not necessarily absolute, 

but it is critical to the limitations on the observations of behavior. For example, the perspectives 

of a musician performing from a notated score and an audience member have different 

                                                 
6 The “symbol” type selector is more commonly called a “string.” However, “string” could be confusing as it is 
homonymous with an acoustic “string.” “Symbol” is the type name used in, Cycling ’74’s Max, the main platform 
for this project. 
Cycling ’74. (2017). Max (Windows version 7.3.3) [software]. Available from http://cycling74.com. 

http://cycling74.com/
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quantitative/qualitative boundaries. The performer recognizes quantifiable elements like pitch 

and rhythm through descriptors and instructions on the page; however, the viewer observes 

physical properties at the rate and manner which they are performed. The performance 

transduces the notational quantities to auditory quantities and the nuance of the performer’s 

behavior effects the qualitative limits. 

1.6 Virtual Reality as a Solution 

Video game interfaces often use generalized peripherals with buttons and analog 

controllers, yet they enable players to perform complicated and nuanced combinations of 

inputs with contextual variation and meaning. Games directly correlate the interface with 

observable behavior in a virtual space and teach combinations through context and repetition. 

The context of the interface and the player’s in-game avatar are set against an 

environment or elements of the game that the player does not control. The environment is 

designed to behave with a scale of unpredictability, but the control interface responds 

predictably so that the player can maintain an understanding of the behavioral context. 

Variability in the environment is essential for establishing the player’s context for the interface, 

since different environmental challenges require learning and executing variations to overcome 

them. Although some games introduce surprise by spontaneously changing the bounds of the 

interface, the player reacts to this like an environmental challenge as they attempt to 

reestablish the bounds of the interface. Many games are actually entirely deterministic, but the 

complexity of the environment’s rules gives the impression of unpredictability. 

While the conceptual framework of a game may differ from a performance piece, the 

overlaps in interface design provide methods for approaching the challenges of interactive 
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behavior that are intrinsic to digital systems. Establishing a boundary between the interface and 

the environment allows for the performer and viewer to learn a context for behavioral 

interaction because it defines what is predictable and unpredictable. These contextual rules can 

correlate to observable behaviors, but allow for broader qualitative representation through the 

representation of nuance and combination. 

Virtual reality (VR) is a mode of computer interface in which a user operates motion 

controllers to interact with virtual environments while using an immersive headset display. The 

benefit of VR is that the user's scale and perspective is synchronized to the virtual space.7 Once 

the user establishes a method for movement in the virtual space, they can coordinate their own 

intuitive body movements with the context of the environment. Additionally, this coordination 

allows for a more parameters of interactive input than what is typical with a button-based hand 

controller. 

This reference to gameplay mechanics creates other possible interactive similarities. 

Virtual Stage incorporates structures of game behavior in both design and aesthetics. This 

increases the combinations of interactive expression and spatial representation.  

                                                 
7 Scott deLahunta, “Virtual Reality and Performance,” JAP: A Journal of Performance and Art 24, no. 1 (2002): 106. 
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2. Virtual Environments 

2.1 Sandbox Games 

Virtual Stage is a game environment, in the sense that its boundaries are specified in the 

rules of how objects function, but not a dictation to the performer of how to interact with those 

rules. This interactive open-endedness is influenced by sandbox gaming strategies, most notably 

the video game Minecraft and the card game Magic: The Gathering. These games supply the 

player with materials and possibilities, but the narrative depends on their decisions and 

creativity of combining these elements. 

Minecraft is an interactive system for building structures out of virtual cubes with no 

inherent game narrative or goal.8 Minecraft’s player constructs their own narrative through how 

they decide to combine materials together. There are two modes to this constructing — a 

scripted progression through collecting and combining materials to build increasingly advanced 

tools, and free-form combinations of the player’s devising like houses or sculptures. These 

modes reinforce each other because the creative construction is imparted a narrative through 

the conflict of acquiring the creative materials. Making a wooden house requires crafting an axe 

and chopping trees; building underwater requires establishing a complicated tunneling system.9 

Virtual Stage is an open system during the development of new instruments, but when the 

performer is in the VR space, the narrative of performance is linked to the process of combining 

instruments. 

                                                 
8 “About Minecraft,” Minecraft Wiki, Gamepedia, accessed November 10, 2016, 
http://minecraft.gamepedia.com/Minecraft_Wiki. 
9 Matthew Belinkie, “What Makes Minecraft So Addictive,” Overthinking It, November 11, 2010, 
http://overthinkingit.com/2010/11/11/minecraft-vs-second-life. 

http://minecraft.gamepedia.com/Minecraft_Wiki
http://overthinkingit.com/2010/11/11/minecraft-vs-second-life
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In early tests for Virtual Stage, controller buttons were each mapped to single functions, 

while the motion controllers were mapped differently depending on which function was active. 

This limits the number of possible functions, especially when including utility functions like 

calibration or camera control. One possible solution is for a button function to toggle a mode 

that changes the function of other buttons; however, the complexity of this type of structure 

increases the difficulty of navigating between functions and requires memorization of the 

structure. 

Virtual Stage’s organizational structure for functions is inspired by the competitive card 

game Magic: The Gathering.10 In Magic, each card represents an individual spell (function) with 

details about the resources it requires and its possible effects on other cards. (Figure 2.1) 

                                                 
10 “Magic: The Gathering,” Wikipedia, accessed November 10, 2016, 
http://en.wikipedia.org/wiki/Magic:_The_Gathering. 

http://en.wikipedia.org/wiki/Magic:_The_Gathering
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Figure 2.1 Parts of a Magic Card11 

Cards are categorized into types and subtypes that indicate their rules some of their 

possible interactions; the primary categorization consists of spells that summon an instance of a 

permanent object to the game space and spells that activate a momentary effect and then 

resolve.12 Permanent objects may inflict a continuous state on the game and/or have 

momentary abilities that can be activated. Spells and abilities are restricted by limits like the 

player’s turn, the availability of the card in the player’s hand, and a mana cost — a color-coded 

representation of the card’s resource requirements. The mana colors imply thematic categories 

and potential synergies with other cards.13 Players must combine effects and permanents that 

                                                 
11 “Parts of a Card,” MTG Salvation Wiki, Gamepedia, accessed November 11, 2016, 
http://mtgsalvation.gamepedia.com/Parts_of_a_card. 
12 “Spell,” MTG Salvation Wiki, accessed December 7, 2016, http://mtgsalvation.gamepedia.com/Spell. 
13 “Mana cost,” MTG Salvation Wiki, accessed December 7, 2016, http://mtgsalvation.gamepedia.com/Mana_cost. 

http://mtgsalvation.gamepedia.com/Parts_of_a_card
http://mtgsalvation.gamepedia.com/Spell
http://mtgsalvation.gamepedia.com/Mana_cost
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function well together while accumulating resources to activate them; strategies are based on 

efficiency of resources, countering the opponent’s spells, and building strong spell 

combinations. 

Virtual Stage references this structure by encapsulating the idea of a spell as a digital 

function. A function can affect the environment, target an object, or instantiate objects with 

their own effects; this normalized approach to functions modularizes the workflow of designing 

and implementing them. However, in Magic, the costs and conditions on effects are a mitigation 

of how quickly players can deploy their strategies; the different types of limitations create 

variations in deck design. In Virtual Stage, there is no competitive structure so it is only limited 

by the performer’s ability to create. As in Minecraft, the performer must manually prepare and 

lay out the component parts to a combination, reinforcing the viewer’s awareness of the 

spatiality of the virtual environment. 

A Magic card’s mana cost describes both a philosophical category and consequently an 

implication of how effect combinations interact. For example green and black are opposites — 

green can accelerate its resources to play tough creatures but black counters it by being able to 

easily destroy creatures regardless of toughness (Figure 2.2).14 

                                                 
14 Notice that the relatively strong creature Alpha Tyrranax has a significantly higher converted mana cost (6) than 
Go for the Throat (2), but Go for the Throat will destroy it. Converted mana cost is total count of how many 
individual mana are required for the spell/effect. Colorless mana can be paid by any color (though not vice-versa). 
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Figure 2.2 Opposing card colors counter each other efficiently15 

Multicolored cards contain aspects from the included colors while uncolored cards are 

neutral artifact types. Many cards share the same mana cost, which ostensibly connotes the 

card’s function and complexity (Figure 2.3). 

                                                 
15 “Gatherer,” Magic: The Gathering, accessed December 1, 2016. http://gatherer.wizards.com/Pages/Default.aspx. 

http://gatherer.wizards.com/Pages/Default.aspx
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Figure 2.3 Magic: the Gathering color themes16 

Virtual Stage borrows this format by referencing functions as sequences of colors, which 

solves multiple problems. Instead of occupying controller buttons with single functions, each 

button represents a color, and much like an alphabetical character, strings of colors spell out a 

function — each function is literally a spelling or “spell” of a string of color characters. Virtual 

Stage uses five colors because this fits the input controller.17 Each color represents a functional 

category such that the color spelling acts as both the function’s button sequence and a memory 

aid for the performer (Figure 2.4).  

                                                 
16 “Color Pie,” MTG Salvation Wiki, Gamepedia, accessed November 11, 2016, 
http://mtgsalvation.gamepedia.com/Color_Pie. 
17 The Razer Hydra controller is the primary development controller. See section I.2.3 for more info. 

http://mtgsalvation.gamepedia.com/Color_Pie
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Figure 2.4 Virtual Stage color symbols18 

While Magic’s mana cost is a resource restriction, button spellings in Virtual Stage don’t 

require any external resource, though it is slightly more time consuming to enter more 

complicated sequences. There is some balance between the most intuitive color spellings and 

minimizing the number of button presses.19 

This paradigm is powerful in that each hand can independently and simultaneously 

execute a separate spell. Instead of limiting each hand to a set of parameters, each hand 

contextually changes its function, allowing two active, concurrent functions to interact. 

Additionally, this requires all functions to be modularly available, which is a prerequisite to 

allowing non-player objects to activate functions. 

2.2 Goal Orientation 

The game environment of Virtual Stage challenges traditional structural boundaries of 

interactive art since it is both a digital media composition and an instrument. It functions as a 

                                                 
18 See section I.3.5 for details on color themes. 
19 See section II.1.1 for specific examples of spells and their color combinations. 



 

21 
 

composition because it establishes an on-stage boundary and setting for an audience but it 

functions as an instrument because there is not necessarily a mandated method for operating 

within this setting. Additionally, the system is designed to be expandable and reconfigurable, 

increasing flexibility and potential with multiple performance iterations. Therefore, the initial 

set of functions are designed to both illustrate the boundaries of the system and stimulate new 

design directions. 

The primary goal of the system is to combine functions such that their aggregate effect 

becomes an interface that exceeds the limits of the interface. Because the environment 

integrates with the interactive behavior, the viewer should evaluate the behavior of objects with 

spatial assumptions of how their combinations could interact. However, this requires a guided 

progression through functions to optimize the rate of behavioral learning. Performance 

instructions would notate a sequence of function combinations, though the performer would be 

free to decide what interaction is best suited for the combination. 

A secondary goal for the system is that the function combinations may symbolically 

illustrate a conceptual structure that is removed from the environment itself. In this way, the 

interactive behaviors would be dependent on the same subjective understanding inherent in 

any art. This type of structure first requires the establishment of the viewer’s behavioral 

understanding and a syntactical combination of functions in reference to that understanding. 

Additionally, the open and expandable nature of the system makes it effective as a 

presentation tool for a meta-discussion of its own properties. Functions could be useful for 

demonstration purposes in a way that may not be interesting during an actual performance. 

Despite having limited performance value, this direction facilitates an additional method to 
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enhance the viewer’s spatial and behavioral understanding of the virtual environment. 

These goals serve as a directive for the initial and future development of the system, 

with an understanding that the design phase is a facet of the interactive process. Spell functions 

themselves are constructed of common sub-components, allowing for improvisation in design; 

this is mirrored by the improvisational performance in the VR environment. Ideally, this 

reinforces the grounding of structure in observable interactivity, rather than creating 

discontinuity between design and performance practice. 

2.3 Hardware Technical Considerations 

In recent years, consumer-priced VR technology has become much more available. Using 

consumer-level hardware provides ease of replacement, significantly reduced cost, and more 

ample software community support. Ideally, the equipment and computing restrictions should 

not influence the overall design and the hardware setup could be upgraded or substituted 

without significant reprogramming. 

A VR headset contains a video display and convex lenses and the main determination of 

quality is the format of the computing base station.20 The HTC Vive and Oculus Rift headsets use 

a PC base station so they have the most potential computing and graphics power; other 

platforms like Gear VR are peripherals to consumer-level smartphones, encapsulating the video, 

head-tracking, and computing into a wireless, battery-powered device. Given that interactive 

audio-visual environments already have heavy computing requirements, Virtual Stage is not 

intended to run on a fully mobile platform and is developed for PC with a wired VR headset.21 

                                                 
20 Will Shanklin, “2016 VR Comparison Guide,” New Atlas, October 18, 2016, http://newatlas.com/best-vr-
headsets-comparison-2016/45984. 
21 See section I.4.3 for details on headset integration. 

http://newatlas.com/best-vr-headsets-comparison-2016/45984
http://newatlas.com/best-vr-headsets-comparison-2016/45984
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The Vive and Rift differ in their manner of head-tracking and controller integration. Both 

headsets have their own controllers with different button formats; however, both rely on 

camera-sensor-based methods for positional tracking.22 The Vive employs mounted boxes that 

emit invisible lasers while the headset and controllers have sensors to orient in reference to the 

boxes. Conversely, the Rift requires a mounted camera to track positions of infrared emitters on 

the controllers, with additional cameras to increase a wider degree of body motion. The 

limitation of these tracking methods is additional setup and testing time to ensure that the 

performance space is optimized for tracking. In an interactive installation piece, long setup to 

optimize space considerations is expected, but in performance pieces, it is ideal to minimize 

setup time by keeping the system self-contained and not reliant on constraints of the 

performance space. 

Sixense developed a third tracking method for consumer-level controllers utilizing 

magnetic fields in the Razer Hydra and the STEM System. These controllers use a base station 

that emits as a magnetic reference field, while the controllers sense their relative position and 

rotation to the base station.23 This method has a more limited range than camera-sensors, but 

they are less restricted by the performance space or ambient light conditions. The STEM System 

is wired but the Hydra controllers are wired to the base station, preventing 360° body rotation 

(Figure 2.5). 

                                                 
22 Shanklin. 
23 The Hydra has been available since 2011 but presently, the STEM System has not met projected release deadlines 
and is still in pre-order. The software API should be similar enough that development for the Hydra should be 
transferrable once the STEM System is available. 
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Figure 2.5 VR controller comparison24 

In an ideal performance tech rehearsal, the interface would require minimal testing and 

allows focus on the space’s sound and video projection equipment. 

Two additional controller methods that have benefits but were not pursued include IR 

body-tracking cameras like the Microsoft Kinect and the LEAP Motion and inertial trackers like 

the Nintendo Wii Remote (Wiimote) and the Nod Backspin. Body-tracking cameras are 

especially susceptible to line-of-sight tracking of body parts, which limits the reliability of data 

and/or the performer’s available motions. Additionally, body-tracking cameras are good at 

tracking gross body movements but easily lose detail in smaller parts like fingers; precise finger 

motions are more easily tracked by physical controllers, which also add a level of haptic 

feedback. 

Inertial hand tracking controllers sense acceleration rather than absolute spatial 

position; if a system references this sensor data directly, there are some non-intuitive mapping 

problems. A spike in controller acceleration is inevitably countered by a negative spike 

representing deceleration; an interface must compensate for this or intentionally contextualize 

                                                 
24 Ben Lang, “Sixense STEM VR Motion Controller Kickstarter is Live – Prices Start at $149,” Road to VR, September 
12, 2013, http://www.roadtovr.com/sixense-stem-vr-motion-controller-kickstarter-prices-149-tiers. 

http://www.roadtovr.com/sixense-stem-vr-motion-controller-kickstarter-prices-149-tiers
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the oscillating acceleration data. As a VR controller, inertial tracker data must be translated into 

spatial position by calibrating them to a reference point; however, the lack of a reference sensor 

makes them prone to drifting out of calibration. Hand calibration would cancel out any offset 

from body movement so an additional positional sensor is necessary for tracking the central 

body position. 

Virtual Stage requires a minimum of two hand tracking controllers and the rotational 

tracking of the VR headset. Presently, it operates with the Hydra controllers and the Oculus Rift 

Developer Kit 2 (DK2). This combination tracks absolute hand position relative to the base 

sensor and head rotation. An additional sensor tracks absolute head positions, but due to the 

Hydra’s limitation on body movement and rotation, head position is relatively static. Using these 

devices provides an upgrade path to the STEM System and a higher video resolution headset as 

they become available.25 

2.4 Software Technical Considerations 

These hardware considerations influence the possible solutions for building the system 

on the computer. The assumption of maximizing computing and graphics power as much as 

logistically possible limits the project to a Windows PC, rather than a Macintosh or a 

smartphone. Following this same assumption, the hardware developers optimize their drivers 

for PC, making other platforms even more difficult to implement. Since designing an entire 

software platform from scratch is not feasible for this scale of project, the two 

environment/engines considered with available VR resources include the Unity game engine 

                                                 
25 The Rift DK2 maximum video resolution is 1920x1080 while the Rift CV1 (Consumer version 1) is 2160x1200. 
While this would increase the visual experience for the performer, it also increases the processing overhead for the 
PC. The performer’s quality of immersion is important but not a primary concern. 
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and Cycling ’74’s Max audio-visual programming environment.26 

Unity is one of the most popular development platforms for VR because it has built-in 

support for most VR device drivers and an extensive community for sharing and marketing 

software assets between developers.27 During the initial development period for Virtual Stage, 

Unity released Unity 5 and changed their subscription model to allow free access to advanced 

features that were previously quite expensive for individual developers.28 

Unity is relatively limited in its digital audio signal processing capabilities, compared to 

popular computer music platforms.29 There are some additional software assets to overcome 

these limitations but it appeared more efficient to develop a method for passing data between 

Unity, which would handle interface and graphics, and Max, which would handle audio. Open 

Sound Control is a protocol that facilitates data transfer between platforms or computers with 

minimal latency, which is necessary for real-time audio response.30 I developed and tested an 

interface for the Open Sound Control format that would facilitate this data transfer, which was 

primarily based on Jorge Garcia Martin’s UnityOSC.31 Additionally, I was successful in integrating 

this with InstantVR Advanced, a software asset that facilitates controller drivers with Unity and 

                                                 
26 Unity Technologies. (2015). Unity (Windows version 5.1) [software]. Available from http://unity3d.com. 
27 “VR Overview,” Unity, accessed November 15, 2016, http://unity3d.com/learn/tutorials/topics/virtual-reality/vr-
overview. 
28 John Riccitiello, “Unity 5 Launch,” Unity Blog, March 3, 2015, http://blogs.unity3d.com/2015/03/03/unity-5-
launch. 
29 “Audio in Unity 5.0,” Unity Documentation, accessed November 10, 2016, 
http://docs.unity3d.com/Manual/UpgradeGuide5-Audio.html. 
30 “Introduction to OSC,” opensoundcontrol.org an Enabling Encoding for Media Applications, accessed November 
15, 2016, http://opensoundcontrol.org/introduction-osc. 
31 See section II.2.24, based on Jorge Garcia Martin’s UnityOSC code. 
Jorge Garcia Martin. (2015). UnityOSC (Version 1.2) [C# code]. Available from 
http://github.com/jorgegarcia/UnityOSC. 

http://unity3d.com/
http://unity3d.com/learn/tutorials/topics/virtual-reality/vr-overview
http://unity3d.com/learn/tutorials/topics/virtual-reality/vr-overview
http://blogs.unity3d.com/2015/03/03/unity-5-launch
http://blogs.unity3d.com/2015/03/03/unity-5-launch
http://docs.unity3d.com/Manual/UpgradeGuide5-Audio.html
http://opensoundcontrol.org/introduction-osc
http://github.com/jorgegarcia/UnityOSC
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establishes the framework of an on-screen performer needed in Virtual Stage.32 

Although these developments were successful, Unity’s rendering output conditions were 

limited at that time. Rendering a first person view to the VR headset and a separate third-

person display for the audience required either two, networked instances of Unity, or scripts 

that interrupt the rendering pipeline to create an additional output window; both of these 

situations would have added an unforeseeable amount of development complication and 

processing overhead. Though this limitation was resolved in subsequent release versions of 

Unity, it highlighted the limitations in Unity’s features and documentation that would impair 

development.33 

Around the time of these developments, users on the Cycling ’74 forum began to solve 

integration problems for VR headsets directly in Max.34 Although Unity has a more advanced 

rendering engine, I was still developing in Max for other projects so the benefit of keeping the 

entire project on one platform was even more appealing. The switch to Max also opened more 

possibility of providing cross-platform support on Macintosh, which would generally help with 

development, even though the main goal was to utilize a PC to run the performance software. 

However, later integration development of the Rift in Max created a tradeoff between allowing 

current Rift drivers and restricting the VR interface to Windows.35  

The decisions on software platforms were a combination of the technical needs of the 

                                                 
32 Passer VR. (2015). InstantVR Advanced (Windows version 3.1.0) [Unity package]. Available from 
http://passervr.com/products/instantvr-advanced. 
33 “Multi-display,” Unity Documentation, accessed November 16, 2016, 
http://docs.unity3d.com/Manual/MultiDisplay.html. 
34 “Oculus Rift,” Cycling ’74 Forums, accessed September 5, 2015, http://cycling74.com/forums/topic/oculus-
rift/#.WEEiveYrKUk. 
35 Graham Wakefield. (2017). Max_Worldmaking_Package (Windows commit 93e573a) [Max external]. Available 
from http://github.com/worldmaking/Max_Worldmaking_Package. 

http://passervr.com/products/instantvr-advanced
http://docs.unity3d.com/Manual/MultiDisplay.html
http://cycling74.com/forums/topic/oculus-rift/%23.WEEiveYrKUk
http://cycling74.com/forums/topic/oculus-rift/%23.WEEiveYrKUk
http://github.com/worldmaking/Max_Worldmaking_Package
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piece, the logistical needs of development, and projected hardware and software availability. 

The chosen hardware is possible on either Unity or Max, but there must be a judgment between 

the benefits of a platform and how heavily the development difficulties would mitigate those 

benefits. 

2.5 Modulation of Virtual Instruments 

The virtual instruments in Virtual Stage are designed modularly to maximize the possible 

combinations of instruments and increase the observability of their behaviors. Functions are 

represented visually and spatially so the event that represents a point of influence between 

functions is a spatial collision. The performer combines dynamic objects (influenced by physics 

forces) and kinematic objects (manually or automatically positioned) to sequence the collisions 

intentionally, incidentally, or accidentally. Collisions in Max are output as a dictionary object that 

indicates which objects are colliding, the velocity of impact, and the spatial properties of the 

collision point.36 However, if the objects remain in contact on successive simulation frames, the 

simulation reports a new dictionary each frame. 

This demonstrates a frequent issue in Virtual Stage and other systems — the difference 

between an event onset and a state toggling on. Some functions, like the instantiation of new 

permanent objects, exist only as an event, whereas other functions influence objects only when 

they are toggled on, like a field activating a force. If physics collisions can activate either type of 

function, the question is whether the state is retriggered by successive collisions (Figure 2.6). 

                                                 
36 Max dictionaries are multi-dimensional data structures that hold symbol and number data. 
“Dictionaries – Structured Data,” Max 7 Documentation, accessed December 7, 2016, 
http://docs.cycling74.com/max7/vignettes/dictionaries. 

http://docs.cycling74.com/max7/vignettes/dictionaries
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Figure 2.6 Toggled vs retriggered states over time 

A toggled contact state is similar to an audio ADSR envelope in that there is a threshold 

of time before collisions would be allowed to retrigger the state, rather than sustaining the 

toggle.37 The choice between these two models is useful because it allows for either type of 

contact to be represented by an audio signal; the contact between the two is mapped as an 

index of modulation (Figure 2.7). 

 

Figure 2.7 Collision envelope as a modulation index 

This method works on audio output signals but also applies to physical models. For 

example, both models could have a continuous audio output, but the collision state modulates 

the routing level from model A to model B. 

                                                 
37 ADSR – attack, decay, sustain, release envelope. This is typically used to modulate the amplitude of another 
audio signal, segmenting it into discreet events. 
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If every possible collision between two objects is a potential routing connection, it 

would be impractical to have a massive routing matrix because the majority of the routing 

connections would be inactive most of the time. A better method is for each collision to activate 

a polyphonic voice that busses the signal from input to output module for the duration of the 

collision envelope. This allows for either the retriggered or toggled type of collision, because it 

only requires that a message is sent to the envelope voice instructing it how to react to 

retriggers. 

Although Max physics simulations mostly consist of rigid body dynamics, they can also 

track contact between overlapping kinematic objects. If the objects are not repelled by collision 

dynamics, it is interesting to track their difference in spatial position and rotation as a 

continuous modulation signal (Figure 2.8). 

 

Figure 2.8 Overlap modulation as continuous control 

Treating each model as a continuous audio signal at least allows for amplitude 

modulation, but collisions or overlaps between different types of objects can modulate different 

types of parameters, creating a variety of sonic effects with a modular structure.  
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3. Virtual Stage 

3.1 Environment Description 

Virtual Stage appears as a wide, empty landscape in which the performer summons 

instances of interactive objects. The virtual performer flies around the space, sets up 

combinations of functions and intentionally (or accidentally) acts upon them to create 

electroacoustic sounds (Figure 3.1). 

 

Figure 3.1 Virtual Stage third-person view 

The performer’s body is correlated to the input from the VR controllers, such that the 

viewer should recognize the virtual performer as the performance agent of the piece, rather 

than watching the live performer directly. Because I am the intended performer of the piece, 

the virtual performer is specifically designed to resemble me, in features and dress; this 

increases the viewer’s immediate ability to recognize the correlation between on-stage and 

virtual performer.38 

The perspective of the audience is modulated in that they are subject to the orientation 

                                                 
38 See section I.4.1 for details on body scanning and mapping. 
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of the camera in the virtual space. The performer can manipulate the camera or there are 

presets for tracking the performer with camera distance and rotation parameters (Figure 3.2).  

 

Figure 3.2 Third-person camera zoomed out 

Additionally, the performer controls the viewer’s video fade, similar to an on-stage 

lighting cue. This allows for clearer segmentations in the performance and virtual setup time 

between events. 

Graphical manipulations to the viewer’s video can be activated by performance 

functions. For example, motion blur and lighting adjustments are included as part of the general 

visual aesthetic so they can be modulated for dramatic effect (Figure 3.3). 



 

33 
 

 

Figure 3.3 Motion blur effects on third-person view 

The audio is directly correlated to the activation of physically modeled virtual 

instruments. The main audio instrument is a 3D Slab that is struck and spatially manipulated. 

Object collisions to this Slab are sonified with spatial position relative to the third-person 

camera (Figure 3.4).39 

 

Figure 3.4 Sword collisions to sonify physical model via Slab 

                                                 
39 It would be possible to provide the performer with a first-person spatialization of the audio, but unlike the video 
perspectives, it is difficult to simultaneously monitor both audio perspectives. Calculating audio spatialization twice 
also considerably increases audio processing costs. 
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3.2 Graphical User Interface 

 The performer’s graphical interface is a first-person view of the virtual environment, 

which allows the performer to feel closely connected with the performance materials. There is 

also a functional benefit to more naturally looking around the environment, in that the hand 

controllers are not constrained to the line of sight; this allows the hands to function 

independent from vision and for the performer to multi-task more efficiently. 

Although the VR headset has a limited viewing angle and screen space must be treated 

economically, some heads-up display (HUD) features are used to extend parts of the interface 

that are not represented spatially (Figure 3.5). The performer sees a miniature version of the 

third-person camera in the HUD so they can optimize camera angles; without being able to 

easily look at the screen the viewer sees, this keeps the performer aware of the audience’s 

experience of the piece. 
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Figure 3.5 User interface on headset40 

The HUD third-person monitor also displays a green or red dot in the corner, indicated 

whether the viewer’s display is faded up or down. This allows the performer to position the 

camera and any visible objects, while still being able to see what will be in frame when the view 

is faded up (Figure 3.6). 

                                                 
40 The performer’s display appears as a split-screen because this is the signal sent to the VR headset. Because the 
HUD is not mapped to both sides of the split-screen, they appear in only one eye and don’t completely block that 
part of the visual field. 
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Figure 3.6 Performer’s heads-up display — left eye 

The HUD displays the current spell for the hand on each side, as well as the spell that is 

currently being queued up (Figure 3.6). This allows the performer to verify the intended 

function before activating it; the HUD also verifies that the queued spelling is a valid function, 

and displays “XXX” if the entered spell is not in the library. 

The bottom of the HUD displays the hand’s active target, which changes the behavior of 

certain spells. If the target is manually cleared or the target object is no longer active, the target 

indicator clears and any targeting spells do not activate or default to the position of the 

triggering hand. 
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3.3 Controller Interface 

 

Figure 3.7 Hydra controller interface41 

The controller interface is designed to maximize the efficiency of spell queueing and 

enable each hand to independently queue and activate spells (Figure 3.7). When entering a 

color sequence to queue a spell, the performer’s HUD shows the spell that is ready or indicates 

if the spelling is not valid. Pressing the joystick in clears the selection, allowing the spelling to be 

restarted; pressing the joystick a second time will also clear the current spell. When a spell is 

queued, pressing the trigger activates the spell. Some spells use the trigger to toggle or have an 

instant effect when the trigger is depressed, while other spells can be partially activated by 

depressing the trigger as a continuous controller. The bumper button chooses a target object, 

                                                 
41 Adapted from Sixense MotionCreator graphic for Skyrim control scheme. 
“Razer Hydra Control Profile – Skyrim,” Sixense, accessed December 5, 2016, http://sixense.com/skyrim. 

http://sixense.com/skyrim
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which is selected by collision with the target sensor projecting from each hand; holding the 

bumper and pressing the joystick clears the current target. If multiple targetable objects are in 

contact with the target sensor, the bumper will cycle through the possible targets. 

The joysticks are used to navigate the virtual performer around the space. The left 

joystick changes the body position and the speed can be regulated by pushing the joystick 

partially. The right joystick moves the body up and down and turns the body left and right. Since 

the Hydra controller restricts the live performer to the same rotation orientation, the joystick is 

necessary to be able to rotate the virtual performer. If the control interface is upgraded to a 

wireless solution, the performer would have freedom to rotate with their body and the right 

joystick X-axis could be used to rotate on a different axis, allowing the performer to spin upside-

down. 

Because the joystick and color buttons are depressed by the thumb on each hand, there 

are some situations where it is difficult to navigate while queueing combinations of spells. One 

of the benefits of being able to use either hand for any spell function is that the performer can 

optimize their hand selection to account for necessary joystick manipulation. 
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3.4 Software Interface 

   

Figure 3.8 Virtual Stage Max GUIs 

The software interface is designed to facilitate development and economize screen 

space while providing access to sub-sections as needed. The top row of toggles are executed in 

order on startup to activate sections of the software. This is useful in debugging because it 

segments parts of the Max patch and isolates problems occurring on startup. It can also be 

useful during testing to shut sections off, like the controller input, so that that test messages can 

be inserted. 

The “SPELLS” display duplicates the function of the HUD spell display, because it is 

impractical to wear the headset all the time during software development. This GUI displays 

each hand’s current and queued spell, along with a button to re-scan the spell library. 

The audio section of the software runs in a separate instance of Max, which helps 

optimize multithreading and protect latency in video and physics processing from interfering 
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with audio triggering. Similarly, sections are opened separately to conserve screen space. A 

master audio slider and meter could be monitored by a technician during performance, but is 

primarily available for testing.42 

3.5 Spell Functions 

The five buttons to queue spells correspond to both the color in the designated spell 

sequence and a categorical representation of the spell’s theme. These categories are loose and 

not all-encompassing, but help the performer to encapsulate spells with visual cues. For 

example, green-red summons a Slab, which is a permanent object that the performer can inflict 

force on, while red-green equips a Sword, which is a held instrument for inflicting force on 

permanents. There are other force instruments, but the Sword is has the simplest purpose 

(Figure 3.9).43 

 

 

Figure 3.9 Virtual Stage color symbols with examples 

The permanent (green) category instantiates objects in the world that use the physics 

                                                 
42 See section I.4.5 for technical details on function spelling. 
43 See section II.1.1 for details on all spell functions. 
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engine. The electroacoustic sounds are created by physically modeled interactions between 

these physics objects so this category also directly relates to audio generation. 

The force (red) category includes spells that create repulsion force on physics objects, as 

well as equipped instruments that strike or influence permanents.  

The alter (yellow) category has spells that change the properties of permanent objects, 

which is reliant on the hand targeting. Alter also includes fields that will influence object 

properties while they are in contact. Fields can be attached in space or can be attached to 

permanent objects, tracking to their position. 

The pull (blue) category creates attraction force fields for physics objects. This can be 

used to hold groups of objects together and then throw them. This category also includes some 

hand held instruments similar to the force category. 

The utility (white) category contains any extra functions that don’t specifically affect the 

environment. For example, the Recenter function can be used to calibrate and zero out the 

controllers and headset position. 
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4. Technical Context 

4.1 Body Scanning 

With the goal of an immersive experience for the performer and a visual representation 

displayed to the audience, body scanning and 3d rigging techniques were employed to create a 

virtual avatar that visually represents the performer’s appearance.44 The process uses a 

Microsoft Kinect v2 camera to do a depth scan of my physical body — via Body Labs’ BodySnap 

software (Figure 4.1).45 

 

Figure 4.1 BodySnap body depth scanning for virtual avatar model 

                                                 
44 See section I.3.1 for why my personal proportions and appearance are used for the virtual avatar. 
Chantel Benson, “Create a 3D Avatar of Yourself with Kinect for Windows v2 and Fuse,” Mixamo Blog, August 7, 
2014, http://blog.mixamo.com/how-to-scan-yourself-into-a-game-ready-3d-model-using-kinect-and-fuse. 
45 Julia Gilroy, “Kinect Your Body,” Bodylabs, December 11, 2014, 
http://www.bodylabs.com/blog/2014/12/11/kinect-your-body. 
Body Labs. (2015). BodySnap. (Windows version 16) [software]. Available from http://bodylabs.com. 

http://blog.mixamo.com/how-to-scan-yourself-into-a-game-ready-3d-model-using-kinect-and-fuse
http://www.bodylabs.com/blog/2014/12/11/kinect-your-body
http://bodylabs.com/
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This software exports an OBJ model of the body shape with proportions relative to the 

performer’s body. Mixamo/Adobe’s Fuse imports the OBJ file, scans it, and fits clothing models 

to the body shape and textures 3d materials on components of the model (Figure 4.2).46 

 

Figure 4.2 Mixamo Fuse – adding clothing to OBJ model 

However, Fuse’s apparel library is limited so the OBJ is exported to Blender to edit the 

default hair and eyewear components, increasing the resemblance to the physical attributes 

(Figure 4.3).47 

                                                 
46 Mixamo, Inc. (2015). Fuse (Windows version 1.3) [software]. Available from http://mixamo.com/fuse. 
47 Blender.org. (2016). Blender (Windows version 2.78) [software]. Available from http://blender.org. 

http://mixamo.com/fuse
http://blender.org/
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Figure 4.3 Edited hair and eyewear models in Blender 

The adjusted OBJ is uploaded to the Fuse online platform for automatic animation 

rigging. This maps a weighted armature to the vertices of the model, effectively creating a 

skeleton structure that deforms the model for animation (Figure 4.4). 



 

45 
 

 

Figure 4.4 Rigged model in Fuse online interface48 

Fuse can export multiple 3D formats, but Collada DAE is the best file format to include 

animation rigging data to import into Max. This also allows the packaging of material and 

texture data into the file, simplifying the Max material configuration. However, Max does not 

use the same axis orientation as Blender so the armature and model must be rotated in Blender 

and exported to swap the Y-axis and Z-axis (Figure 4.5). 

                                                 
48 Note that the online platform does not import customizations in 3d material shaders so this screenshot appears 
more glossy than in the editing software and other platforms. 
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Figure 4.5 Rigged model in Blender 

This axis swapping is problematic because the controller data is represented by a 4-

dimensional quaternion rotation that needed axis adjustment, which cannot be directly rotated 

or swapped as a single axis in a 3-dimensional Euler rotation. Applying rotations to the armature 

and model rotations before importing into Max maintains the appropriate visual axis orientation 

(so that the models head points up). Before the controller data maps onto the animation points, 

they are converted to Euler rotation values and rotated to align properly to the model. 

With the use of hand controllers, only two animation nodes are tracked but this requires 

animation of the arm nodes. This requires an Inverse Kinematics (IK) calculation, which 

retroactively calculates armature positions based on the positions of nodes hierarchically down 
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the skeleton. Max does not have a built-in IK solver so the suggested IK solution is to accomplish 

this is to create physics constraints that link the nodes together and solve using rigid body 

physics.49 Testing of this method encountered problems: calculating the constraint positions and 

forces becomes increasingly complicated when also scaling the body model; there is a tradeoff 

between convincing physical motion and a stable physics simulation; and this physics solver 

does not appear as realistic as most IK solvers. Because of these, the arms were removed from 

the model and the tracked hand positions float, detached from the body; this eliminates 

inconsistent animation of the arms, with an assumption that it is less distracting and less 

computationally expensive.50 

4.2 Controller Software 

The Razer Hydra controllers track motion in 6-degrees-of-freedom (6dof) and have 

multiple buttons and analog inputs on each controller.51 There is no Windows Max external to 

track these parameters so the use of the controllers requires a Windows software application to 

pull data from the controller drivers and stream it to Max. 

The Sixense Software Development Kit (SDK) includes the driver files and an Application 

Program Interface (API) for developing an application using the Hydra controller data.52 

                                                 
49 “Physics Patch-a-day,” Cycling ’74, accessed November 15, 2015, http://cycling74.com/2012/09/19/00-physics-
patch-a-day. 
50 After these development decisions, Caliko, an Inverse Kinetmatics Java library was released. This has been tested 
using Max’s [mxj] Java object and is not computationally prohibitive and can interface properly with a rigged 
Collada model. However, coordinating the geometry axes of the Max/Jitter space, the model joint rotations, and 
the Caliko structure space is not trivial. This requires further development but should allow for a reintegration of 
the 3d body’s arms. 
Alastair Lansley, et al., “Caliko: An Inverse Kinematics Software Library Implementation of the FABRIK Algorithm,” 
Journal of Open Research Software 4(1), e36, accessed December 25, 2017, DOI: http://doi.org/10.5334/jors.116. 
51 6-degrees-of-freedom (6dof) refers to the axes of position and rotation, without being inhibited by 3d calculation 
problems like gimbal lock. 
52 Sixense Entertainment, Inc. (2012). Sixense SDK (Windows version 102215) [software library]. Available from 
http://sixense.com/windowssdkdownload. 

http://cycling74.com/2012/09/19/00-physics-patch-a-day
http://cycling74.com/2012/09/19/00-physics-patch-a-day
http://doi.org/10.5334/jors.116
http://sixense.com/windowssdkdownload
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MrMormon on the Sixense Forum developed a Win32 application that utilizes these drivers this 

purpose.53 This application also makes use of the OscPkt library, which is an efficient solution for 

streaming Open Sound Control (OSC) parameter data to a network port.54 

When retrieving data from a network port, Max requires a polling interval to schedule 

the port query.55 The Hydra drivers output 4-dimensional quaternion rotation values (to allow 

for 6-degrees-of-freedom) and streams each of these values to a separate OSC register. Because 

Max’s polling interval is not synchronized to the rate of OSC streaming, there are intermittent 

discontinuities in the quaternion values.56 This required recompiling MrMormon’s Win32 

application to pack the quaternion values into a single message list, enforcing quaternion axis 

synchronization in Max.57 This also allows preemptive optimization of the register symbols to 

efficiently route values in Max. 

Max splits the individual controller parameters in a routing patch and assigns to [value] 

registers, which can be referenced by any other module in Max.58 This patch also parses 

positional and rotational velocity and acceleration of the 3-dimensional Euler values, which is 

also assigned to [value] registers. 

4.3 Headset Software 

Although there were early tests for using the Oculus Rift in Unity, the implementation in 

                                                 
53 “The Most Versatile Musical Instrument, Sixense Forum, accessed February 10, 2016, 
http://sixense.com/forum/vbulletin/archive/index.php/t-2870.html. 
54 Julien Pommiers. (2015). OscPkt (Windows version 1.2) [C++ OSC library]. Available from 
http://gruntthepeon.free.fr/oscpkt. 
55 See section II.2.13 for Hydra OSC parsing in Max. 
56 This cannot be solved by directly interpolating the dimension values because quaternion rotation requires a 
smooth rotational transition between 0 and 360 degrees. 
57 See section II.2.1 for Hydra Win32 application code. 
58 See section II.2.14 for Hydra data routing in Max. 

http://sixense.com/forum/vbulletin/archive/index.php/t-2870.html
http://gruntthepeon.free.fr/oscpkt
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Max is facilitated by the [oculusrift] external by Graham Wakefield and discussed on the Cycling 

’74 forum.59 The multi-window setup required in Virtual Stage uses the [jit.gl.node] Max object 

to hierarchically structure video render nodes.60 

This requires that [jit.gl.render o] is the parent render context and [jit.gl.node o @name 

world] renders inside of it. All of the environment’s 3d objects render inside the “world” node. 

Separately, [jit.gl.node o @name o_monitor] renders all of the 2d HUD context like text and 

spell colors, as well as a [jit.gl.videoplane] with the third-person HUD camera. These are alpha-

blended with transparency to overlay on the first-person cameras textures and the HUD 

together onto the headset display. 

4.4 Render Contexts 

The additional render context for the third-person camera also implements post-

processing effects to make it more visually appealing.61 These aren’t as important for the 

performer’s first-person view, so they were removed for graphics efficiency. The post-processing 

effects used are: Fast Approximate Anti-Aliasing to smooth out jagged edges; Bloom-Tonemap 

to rescale color values and add blur to highlights; and Slide Motion-Blur, which 

interpolates/motion-blurs the image and can be turned up for dramatic, visual effect. 

The third-person camera’s [jit.gl.camera world] must be set to “@capture 1,” enabling 

output to a GL video texture, rather than rendering directly onto the render context. This routes 

it to two separate [jit.gl.videoplane]s — one for the audience’s video window, and one for the 

[jit.gl.node o @name o_monitor] node that renders on the performer’s HUD. 

                                                 
59 See section I.2.4 for details on Unity tests. 
60 See section II.2.16 for Oculus Rift render context in Max. 
61 See section II.2.17 for third-person camera and post-processing Max code. 
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Depth-of-field filters were tested, which would add photorealism to the third-person 

camera display.62 Unfortunately, Max’s GL render engine is limited in output of multiple render 

context textures, so it can either output depth information or alpha-blended transparency.63 

Alpha-blending is more useful in Virtual Stage and is required for semi-transparent objects, so 

this was selected over of the depth-of-field filters. 

4.5 Function Spelling 

The performer’s input of spell functions requires a reliable system for checking button 

sequences against a library of possible spell combinations. This type of process is inefficient in 

Max because it requires a multi-dimensional data structure and functions for checking if symbol 

values or keys are inside the data structure. Implementing this in Max requires conditional 

iteration through the entire list, which is inefficient in Max. 

A prototype Javscript solution stores button/color sequences and check them against 

the spells.json library file. Unfortunately, the Max Javascript [js] object operates in the low-

priority thread so it is prone to timing error; the script was ported to a Java class for running 

with Max’s [mxj] Java wrapper.64 A separate Java class parses the output and draws the color 

symbols and spell names onto the HUD using [jit.gl.sketch] instructions.65 

A Max patch tracks the controller input data, implements these [mxj] classes, and sends 

messages to the spell functions on the relevant hand.66 

                                                 
62 Depth of field is an effect where the distance between near and far focus creates a blur effect. 
63 “Re: Re: RE: Depth of field style blur shader + global illum/soft shadow shader?,” Cycling ’74 Forum, accessed July 
2016, http://cycling74.com/forums/topic/re-re-re-depth-of-field-style-blur-shader-global-illumsoft-shadow-
shader/#.WEgCXOYrKUk. 
64 See section II.2.3 for the Java spell.json parser. 
65 See section II.2.2 for Java [jit.gl.sketch] drawing instructions. 
66 See section II.2.22 for Max function spell checker. 

http://cycling74.com/forums/topic/re-re-re-depth-of-field-style-blur-shader-global-illumsoft-shadow-shader/%23.WEgCXOYrKUk
http://cycling74.com/forums/topic/re-re-re-depth-of-field-style-blur-shader-global-illumsoft-shadow-shader/%23.WEgCXOYrKUk
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4.6 Physical Modeling 

The primary audio physical model in Virtual Stage for electroacoustic sound is based on 

a waveguide string model.67 Implementing in Max is facilitated by [gen~], which allows Max-

style programming of signal processing with single-sample delays.68 This can be implemented by 

creating a series of [delay] objects in [gen~], with boundary filters/coefficients, and impulse 

signal inputs (Figure 4.6). 

 

Figure 4.6 Waveguide string with two output pickups in [gen~] 

However, this model is limited in that the input signal must be directly routed into the 

model and all input signals are synchronized to the same insertion point. Sonifying multiple 

impulse points on the model at simultaneously requires multiple insertion points. A solution 

implements the standard waveguide delay lines as feedback read/write points in a multi-

                                                 
67 Perry R. Cook, Real Sound Synthesis for Interactive Applications (Natick, Massachusetts: A K Peters, 2002), 97–
106. 
68 “Gen~ for Beginniners,” Cycling ’74 Wiki, accessed December 7, 2016, 
http://cycling74.com/wiki/index.php?title=gen~_For_Beginners. 

http://cycling74.com/wiki/index.php?title=gen~_For_Beginners
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channel circular buffer. A [phasor] cycles through the buffer and the sample distance between 

the read and write points determines the resonant frequency of the feedback.69 

This model assumes the phasor steps through the buffer sequentially; however, if the 

write-point is modulated at the audio rate to create modulation sidebands, it skips over buffer 

indices and causes audible signal discontinuities. Detection of discontinuity in buffer writing and 

conditional interpolation fills in skipped indices faster than the audio rate.70 High-frequency 

modulation correction is computationally expensive and causes audio glitches that are worse 

than the writing discontinuities. The solution limits the maximum interpolation steps and relies 

on constrained modulation frequencies to prevent distortion from discontinuities. 

With this physical model, any external audio module may write into the buffer 

channels.71 A collision detector polyphonically assign voices to write into the buffer at different 

insertion points, simulating impulses at different points of the string. A global phasor 

synchronizes the model’s buffer read/write points the delay size is recorded to a global buffer; 

this is referenced to synchronize the impulse’s write point against the delay line. 

This configuration allows for a more realistic representation of sounding object (string) 

and impulse actuator (plectrum/mallet). However, a waveguide string does not sound especially 

interesting when modulating the insertion point unless something else is manipulating the 

delay line. A separate module scatters signal across two string models with separate tuning, 

resulting in more effect from multiple impulse positions.72 

                                                 
69 See section II.2.5 for [gen~] patch with buffer writing waveguide string.  
70 See section II.2.6 for interpolating buffer write [gen~] patch, based significantly off Graham Wakefield’s work. 
71 See section II.2.7 for physical model buffer poker. 
72 See section II.2.8 for cross-physical model scattering. 
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This method for a physical model is modular because additional impulse sources can be 

developed to activate the model without creating new versions of the waveguide. It is robust at 

creating complex timbres when modulating parameters with audio signals, and allows signal-

rate modulation of multiple parameters. This is the basis for electroacoustic sound in Virtual 

Stage because each audio module is represented by a discreet object in 3d space. Mapping 

spatial parameters of the objects onto the physical parameters of the models allows multiple 

methods to drive the same type of model and a visible correlation to the sonification.
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5. Conclusions 

Modular design facilitates the creation of a virtual environment for digital interaction by 

integrating the audio and video structures. Physically modeled digital instruments have a 

capacity for nuanced control and visualizing them spatially creates a representational 

framework for meaningful interactive gestures. Additionally, a visualized interface of sound 

increases the viewer’s potential for understanding the interactive vocabulary. This approach 

combines and blurs the relationship between performance space and instrumental interface. 

Virtual Stage enhances the possibilities of perceived interaction in digital systems; the viewer’s 

understanding of the environment relies on their connection to the performer’s interactions 

and is heightened by the behavioral process. 

The future development of Virtual Stage will expand the number of interactive functions 

to expand the interactive possibilities. Advancements in computational power and graphics 

processing will allow for a denser population of virtual objects and a wider array of 

simultaneous interactive possibilities. Available consumer-grade virtual reality control and 

display hardware continues to increase in accuracy and reliability; this will increases the 

immersive potential for the performer and make it more viable to extend the system to other 

computer platforms. These advancements could also lead to potential for multi-user 

performances. 

The additional possibilities of interactive performance understanding should challenge 

both the performer and the viewer to evaluate their conceptions of physicality and observation. 

It is difficult to maintain a coherent idea of behavioral structure when data is abstracted and 

manipulated by digital processes. Ultimately, this challenges us to develop our understanding of 
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space and time, leading to new ideas and problem solving methods. Immersive interfaces and 

open structures are tools that reinforce these developments. However, they rely on our own 

thoughtfulness and attention to expand our awareness in the world. 
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PART II 

CREATIVE DOCUMENTATION
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1. Spell Notation 

1.1 Spell Library 

The Spell Library (spells.json) is a reconfigurable mapping of the color spelling of each function. 
This is where functions are defined and their color combinations are set. Each spell corresponds 
to a function abstraction that requires a trigger sent to [function]-[activator]. 

spells.json requires a syntax of "[comma-separated number spelling]":"[function]", 

{ "0":"recenter", //0=white 
 "0,1":"speed-mode", 
 "0,2":"light-hand", 
 "0,3":"target-mode", 

"0,0":"camera-mode", 
 
 "1":"push", //1=red 
 "1,1":"gun", 
 "1,2":"fan", 
 "1,3":"sword", 
 "1,4":"whip", 
 
 "2":"grab", //2=yellow 
 "2,1":"force-field", 
 "2,2":"resize", 
 "2,3":"delete", 
 "2,4":"pull-field", 
 "2,0":"clone", 
 
 "3":"block-make",   //3=green 
 "3,1":"slab-make", 
 "3,3":"ball-make", 
 "3,0":"dog", 
 
 "4":"hold", //4=blue 
 "4,1":"glove", 
 "4,4":"pull", 
 "4,4,4":"mass-pull" } 
 

Function descriptions in the remainder of this section are formatted: 
[function name] 
[color spelling] – [number spelling] – [description] 

1.2 Recenter 

 – 0 – Zeroes the position and rotation of the hand controllers and the headset. Look 
straight ahead and hold the controllers to your shoulders– left to left and right to right. 
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1.3 Speed-Mode 

 – 01 – Toggles a mode that quadruples performer position and doubles rotation 
speed. Also lightens skin color as a visual cue that the mode is active. 
 

1.4 Light-Hand 

 – 02 – Toggles the viewer’s display to fade up or down. A green or red dot circle on 
the performer’s HUD displays the current state of the fade. 
 

1.5 Target-Mode 

 – 03 – Toggles the hand’s targeting state between short range and long range. 
 

1.6 Camera-Mode 

 – 00 – Cycles between camera presets after a one second delay. Uses a separate, 
smaller set of presets than the software interface GUI. 
 

1.7 Push 

 – 1 – Equips a small force-field around the hand that repels physics objects.  
 

1.8 Gun 

 – 11 – Equips an instrument that shoots fast projectiles. 
  

1.9 Fan 

 – 12 – Equips an instrument that emits a force-field proportionate to the hand’s 
velocity. Activates Slabs with noise impulses. 
 

1.10 Sword 

 – 13 – Equips a long, rigid instrument used for striking slabs and other physics 
objects. Activates Slabs with s triangle wave signal. 
 

1.11 Whip 

 – 14 – Equips a long, constraint chain instrument, used for striking slabs and other 
physics objects. Activates Slabs with sawtooth wave signal. 
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1.12 Grab 

 – 2 – Begins to offset the current target’s position and rotation. If no object is 
targeted, effects the first available target. 

 
1.13 Force-Field 

 – 21 – Creates an instance of a floating force-field that repels physics objects. 
 

1.14 Resize 

 – 22 – Begins to offset the current target’s scale. If no object is targeted, effects the 
first available target. 
 

1.15 Delete 

 – 23 – Removes the instance of the current target. If no object is targeted, effects 
the first available target. 
 

1.16 Pull-Field 

 – 24 – Creates an instance of a floating force-field that attracts physics objects.  
 

1.17 Clone 

 – 20 – Duplicates the instance of the current target. If no object is targeted, effects 
the first available target. 
 

1.18 Block-Make 

 – 3 – Creates an instance of a small physics cube. Activates Slabs with a DC impulse. 
 

1.19 Slab-Make 

 – 31 – Creates an instance of a physical model audio slab. Receives impulses from 
certain physics objects and equipped instruments. Overlapping Slabs feed into each 
other. 
 

1.20 Ball-Make 

 – 33 – Creates an instance of a small bouncy sphere. Activates Slabs with a DC 
impulse. 
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1.21 Dog 

 – 30 – Creates an instance of an autonomous robot that randomly roams around 
the environment and repels physics objects on contact. If Dog is already active, the spell 
summons it to the current position. 
 

1.22 Hold 

 – 4 – Equips a small force-field around the hand that attracts physics objects.  
 

1.23 Glove 

 – 41 – Equips a small field that modulates Slab audio. 
 

1.24 Pull 

 – 44 – Equips a long, thin force-field around the hand that attracts physics objects.  
 

1.25 Mass-Pull 

 – 444 – Equips a large force-field around the hand that attracts physics objects. 
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2. Code Documentation 

2.1 Hydra Controller Win32 Command Line Solution 

Hydra.cpp 
 
#include "../glfw.h" 
#include "../sixense.h" 
#define _WINSOCK_DEPRECATED_NO_WARNINGS 1; 
#define _CRT_SECURE_NO_WARNINGS 1; 
#define OSCPKT_OSTREAM_OUTPUT 
#pragma comment(lib, "../sixense.lib") 
#pragma comment(lib, "../sixense_utils.lib") 
#pragma comment(lib, "../libglfw.a") 
#pragma comment(lib, "../libopengl32.a") 
#include "../oscpkt.hh" 
#include "../udp.hh" 
 
using namespace oscpkt; 
#include <iostream> 
#include "stdafx.h" 
using namespace std; 
 
int main(){ 
 sixenseInit(); 
 sixenseSetActiveBase(0); //operates on one base only 
 sixenseSetFilterEnabled(1); 
 sixenseControllerData dat; 
 UdpSocket sok; 
 sok.connectTo("localhost", 7022); //port is hard coded 
 std::cout << "GLFW time set to .033" << std::endl; 
 for (glfwInit();; glfwSetTime(glfwGetTime() - .033)){ //set interval time 
  for (; glfwGetTime()<.033;); 
  PacketWriter pkt; 
  pkt.startBundle(); //create OSC packet 
  Message lpa("l p"), //left – position 
   ljx("l jx"),  //joystick X 
   ljy("l jy"), //joystick Y 
   ltt("l t"),  //trigger 
   lb0("l b 0"), //buttons 
   lb1("l b 1"), 
   lb2("l b 2"), 
   lb3("l b 3"), 
   lb4("l b 4"), 
   lb5("l b 5"), 
   lb6("l b 6"), 
   lra("l r"),  //rotation 
   rpa("r p"), //right 
   rjx("r jx"), 
   rjy("r jy"), 
   rtt("r t"), 
   rb0("r b 0"), 
   rb1("r b 1"), 
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   rb2("r b 2"), 
   rb3("r b 3"), 
   rb4("r b 4"), 
   rb5("r b 5"), 
   rb6("r b 6"), 
   rra("r r"); 
  sixenseGetNewestData(0, &dat); //append data to OSC packet 
  pkt.addMessage(lpa.pushFloat(dat.pos[2])) 
   .addMessage(lpa.pushFloat(dat.pos[1])) 
   .addMessage(lpa.pushFloat(dat.pos[0])) 
   .addMessage(ljx.pushFloat(dat.joystick_x)) 
   .addMessage(ljy.pushFloat(dat.joystick_y)) 
   .addMessage(ltt.pushFloat(dat.trigger)) 
   .addMessage(lb0.pushInt32(dat.buttons&SIXENSE_BUTTON_START ? 1 : 0)) 
   .addMessage(lb1.pushInt32(dat.buttons&SIXENSE_BUTTON_1 ? 1 : 0)) 
   .addMessage(lb2.pushInt32(dat.buttons&SIXENSE_BUTTON_2 ? 1 : 0)) 
   .addMessage(lb3.pushInt32(dat.buttons&SIXENSE_BUTTON_3 ? 1 : 0)) 
   .addMessage(lb4.pushInt32(dat.buttons&SIXENSE_BUTTON_4 ? 1 : 0)) 
   .addMessage(lb5.pushInt32(dat.buttons&SIXENSE_BUTTON_BUMPER ? 1 : 0)) 
   .addMessage(lb6.pushInt32(dat.buttons&SIXENSE_BUTTON_JOYSTICK ? 1 : 0)) 
   .addMessage(lra.pushFloat(dat.rot_quat[3])) 
   .addMessage(lra.pushFloat(dat.rot_quat[2] * -1)) 
   .addMessage(lra.pushFloat(dat.rot_quat[1] * -1)) 
   .addMessage(lra.pushFloat(dat.rot_quat[0])); 
  sixenseGetNewestData(1, &dat); 
  pkt.addMessage(rpa.pushFloat(dat.pos[2])) 
   .addMessage(rpa.pushFloat(dat.pos[1])) 
   .addMessage(rpa.pushFloat(dat.pos[0])) 
   .addMessage(rjx.pushFloat(dat.joystick_x)) 
   .addMessage(rjy.pushFloat(dat.joystick_y)) 
   .addMessage(rtt.pushFloat(dat.trigger)) 
   .addMessage(rb0.pushInt32(dat.buttons&SIXENSE_BUTTON_START ? 1 : 0)) 
   .addMessage(rb1.pushInt32(dat.buttons&SIXENSE_BUTTON_1 ? 1 : 0)) 
   .addMessage(rb2.pushInt32(dat.buttons&SIXENSE_BUTTON_2 ? 1 : 0)) 
   .addMessage(rb3.pushInt32(dat.buttons&SIXENSE_BUTTON_3 ? 1 : 0)) 
   .addMessage(rb4.pushInt32(dat.buttons&SIXENSE_BUTTON_4 ? 1 : 0)) 
   .addMessage(rb5.pushInt32(dat.buttons&SIXENSE_BUTTON_BUMPER ? 1 : 0)) 
   .addMessage(rb6.pushInt32(dat.buttons&SIXENSE_BUTTON_JOYSTICK ? 1 : 0)) 
   .addMessage(rra.pushFloat(dat.rot_quat[3])) 
   .addMessage(rra.pushFloat(dat.rot_quat[2] * -1)) 
   .addMessage(rra.pushFloat(dat.rot_quat[1] * -1)) 
   .addMessage(rra.pushFloat(dat.rot_quat[0])); 
  sok.sendPacket(pkt.packetData(), pkt.packetSize()); 
 } 
 while (true) 
 { 
  Sleep(10000); 
 } 
}
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2.2 [mxj] Spell Displaying Overlay Drawer 

SpellDisplayer.java 
 
import com.cycling74.max.Atom; 
import com.cycling74.max.MaxObject; 
 
public class SpellDisplayer extends MaxObject { 
 
    int x = 1; 
 int maxspell = 6; //maximum number of characters 
 String[] colors = {"1 1 1 1", //build color array 
   "1 .25 .1 1", 
   "1 1 .25 1", 
   ".25 1 .25 1", 
   ".25 .25 1 1", 
   "0 0 0 0"}; 
  
    int[][] n = {{0,3,6,9,12,15},  //circle row positions 
            {18,21,24,27,30,33} 
    };  
  
        SpellDisplayer() { //Max object init 
        declareIO(1,1); 
    } 
 
    public void loadbang() { 
        bang(); 
    }   
  
    public void disp(Atom[] a){ //set row colors 
        reset(a[0].getInt()); 
        for (int i = 1; i < a.length; i++) { 
 replace(a[0].getInt(),i,a[i].getInt()); 
        } 
} 
  
    public void reset(int x){ //resets the given row 
        for (int i = 0; i < maxspell; i++){ 
 replace(x,i+1,5); 
        }  
} 
 
public void replace(int r, int p, int c){ //change colors 

outlet(0,"cmd_replace " + n[r][p-1] + " glcolor " + colors[c]); 
} 
  
public void circ(double r, double g, double b, double a, double x, double y){ //draw circles 

outlet(0,"glcolor " + r + " " + g + " " + b + " " + a); 
outlet(0,"moveto " + x + " " + y + " 0"); 
outlet(0,"circle 0.25"); 

} 
 
public void bang() {  //set up drawing 
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    outlet(0, "reset"); 
    circ(0,0,0,0,-1.3,.535); 
    circ(0,0,0,0,-.8,.535); 
    circ(0,0,0,0,-.3,.535); 
    circ(0,0,0,0,.2,.535); 
    circ(0,0,0,0,.7,.535); 
    circ(0,0,0,0,1.2,.535); 
    circ(0,0,0,0,-1.3,-.268); 
    circ(0,0,0,0,-.8,-.268); 
    circ(0,0,0,0,-.3,-.268); 
    circ(0,0,0,0,.2,-.268); 
    circ(0,0,0,0,.7,-.268); 
    circ(0,0,0,0,1.2,-.268); 
    } 
}
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2.3 [mxj] JSON Parser and Spell Reader with Controller Spelling 

ButtonSpell.java 
 
import com.cycling74.max.MaxObject; 
import java.io.FileReader; 
import java.util.ArrayList; 
import java.util.List; 
 
import org.json.JSONException; 
import org.json.simple.JSONObject; 
import org.json.simple.parser.JSONParser; 
 
public class ButtonSpell extends MaxObject { 
    String spells = "M:/virtual_stage/spells/spells.json"; 
        JSONParser parser = new JSONParser(); 
        JSONObject jsonObject = null;  //loaded json from file  
        Object xObject = null;   //object holder 
        String spelst = " ";   //string holder 
        String spelc = " ";   //string with commas removed 
        int[] c = new int[]{0,0,0,0,0,0,0,0,0}; //detect change 
        int maxspell = 6;   //maximum characters in spelling 
        List<Integer> speller = new ArrayList<Integer>(1); //appends buttons for spelling 
        List<Integer> spelt = new ArrayList<Integer>(1); //list holder 
        boolean res = true;  //remember reset state 
        boolean check = false;  //stores if spell is valid 
 
        ButtonSpell() { //Max object init 
            declareIO(1,4); 
            //outlets: 
            //1-symbols to display parser 
            //2-text for top row 
            //3-text for bottom row 
            //4-clear messages 
        } 
 
 public void read() throws JSONException { //JSON file reader 
     System.out.println(spells); 
     try{ 
         Object obj = parser.parse(new FileReader(spells)); 
         jsonObject = (JSONObject) obj; 
     } catch (Exception e) { 
         e.printStackTrace(); 
     } 
     reset(); //re-init after loading 
 } 
    
 public void reset() { //re-initialize 
     outlet(0,1);   //bottom row 
     outlet(0,0);   //top row 
     outlet(4,0);   //clear hand state 
     ResetSpeller();    //reset speller to bottom row 
     outlet(2, "-");   //bottom row 
     outlet(1, "-");   //top row 
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 } 
  
 public void list(int x, int y) { //buttons index, state 
  if (y == 1 && c[x] == 0) {  //check for state change 
      if (x < 5) {   //spell buttons 
          res = true;   //clear reset state 
          if (speller.size() < maxspell+1) { //check for max spell length 
              speller.add(x);  //append input to spell 
              SpellConvert();  //set bottom row 
              Spelled(2);    //check/out for spell name bottom row 
          } 
      } else if (x == 6) { //joystick button(clear) 
          if (res == false) { //check for reset state 0  
              outlet(0,0);  //clear top row      
              outlet(3,0);  //clear top text 
          } else {  //reset state 1 
              res = false;  //ready to clear top row 
              outlet(0,1);  //clear bottom row 
              outlet(3,1);  //clear bottom text 
              ResetSpeller();  //reset speller to bottom row 
          } 
      }  
  } 
        c[x] = y;  //update state change 
    } 
  
    public void bang(){  //trigger on(>0) priority bang 
        if (check == true) {  //is spell valid? 
            if (speller.size() > 1) { //is anything spelled? 
                speller.set(0, 0);  //set top row output 
                SpellConvert();  //set spell colors 
                Spelled(1);  //check/out for spell name on top row 
                outlet(0,1);  //clear bottom row 
                outlet(2,"-");  //clear bottom text 
                ResetSpeller();  //reset speller to bottom row 
            } 
        } 
    } 
  
    public void SpellConvert() { 
        spelst = speller.toString(); 
        spelst = spelst.replace("[", "");  //remove the right bracket 
        spelst = spelst.replace("]", "");  //remove the left bracket 
        spelst = spelst.replace(",", "");  //remove commas 
        outlet(0,spelst); 
    } 
  
    public void Spelled(int x) {  //x = row number 
        spelt = new ArrayList<Integer>(speller); //copy list for processing 
        spelt.remove(0);   //remove first entry 
        spelc = spelt.toString();  //convert to string 
        spelc = spelc.replace(" ", "");   //remove spaces   
        spelc = spelc.replace("[", "");   //remove the right bracket 
        spelc = spelc.replace("]", "");   //remove the left bracket 
        if (jsonObject.get(spelc) != null) { //check isset 
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            xObject = jsonObject.get(spelc); //store as Object 
            outlet(3,x-1); 
            outlet(x,xObject.toString());  //output spell text to x row 
            check = true;   //spell is valid 
        } else { 
            outlet(x,"XXX");   //unset text 
            check = false;   //spell is invalid 
        } 
    } 
  
    public void ResetSpeller() { //reset speller list to [1] 
        speller = new ArrayList<Integer>(0); 
        speller.add(1); 
    } 
}
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2.4 [gen~] 3-Axis Waveguide String with Aligned Scattering Junction 

xd_string.gendsp 
 
//samp,left-buffer,right-buffer,left-delay,right-delay,left-reflect,right-reflect,scatter,buffer-sym,buffer-max,input,pan 
scat(t, lb, rb, ld, rd, lr, rr, k, std, bm, i, p) 
{ 
    ls = -1 * peek(std, wrap(t - bm * ld, 0, bm), lb) * lr; //left summing 
    rs = -1 * peek(std, wrap(t - bm * rd, 0, bm), rb) * rr; //right summing 
    li = (ls * k) + ((1 - k) * rs) + i * p; //left input 
    ri = (ls * (1 + k)) + (-1 * k * rs) + i * (1 - p); //right input 
    poke(std, li, t, lb);  //write left 
    poke(std, ri, t, rb); //write right 
    return 0; 
} 
 
Buffer std("#0-string_delays"); //delay buffer 
History t(0); //index 
Param bm(4410); //buffer max 
Param xrl(0); //X Reflect coeff  
Param xrr(0); 
Param yrl(0); //Y " 
Param yrr(0); 
Param zrl(0); //Z " 
Param zrr(0); 
Param xk(0); //X Scatter coeff 
Param yk(0); //Y 
Param zk(0); //Z 
Param xp(0); //X Pan 
Param yp(0); //Y  
Param zp(0); //Z 
 
t = wrap(t + 1, 0, bm); //accum sample 
scat(t, 0, 1, in1, in2, xrl, xrr, xk, std, bm, in7, xp);  //X-axis string 
scat(t, 2, 3, in3, in4, yrl, yrr, yk, std, bm, in7, yp);  //Y-axis string 
scat(t, 4, 5, in5, in6, zrl, zrr, zk, std, bm, in7, zp);  //Z-axis string 
out1 = peek(std, t, 0); 
out2 = peek(std, t, 1); 
out3 = peek(std, t, 2); 
out4 = peek(std, t, 3); 
out5 = peek(std, t, 4); 
out6 = peek(std, t, 5);
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2.5 [gen~] Buffer-Based Waveguide String Model 

z_string.gendsp 
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2.6 [gen~] Interpolating Buffer Write 

ipoke.gendsp 
 
// adapted from Graham Wakefield’s ipoke code 
// main difference is the limiting of interpolation steps to prevent runaway loops 
History idx0; 
Delay vd(4);  // previous input values 
val1 = in1; 
idx1 = in2*dim(buf); 
chan = in3; 
overdub = in4; 
maxstp = in5; //maximum step 
// cache index for next time: 
idx0_next = idx1; 
// store input value into the delay buffer: 
vd.write(val1); 
// handle wrap around:  
if (idx1 < idx0) { idx1 += dim(buf); } 
// get interpolation scalar: 
iscale = fixnan(1/(idx1 - idx0)); 
// write samples: 
idxi0, idxi1 = floor(idx0), floor(idx1); 
dif = abs(idxi1-idxi0); //determine step amount 
stp = round(dif/clip(dif,1,maxstp)); //enforce maximum step amount 
for (i=idxi0; i<idxi1; i+=stp) { 
    // interpolated read from delay: 
    a = (i - idx0)*iscale; 
    v = vd.read(1-a); 
    // write into buffer (with overdub) 
    poke(buf, v, i, chan, overdub, boundmode="wrap"); 
} 
// output recorded samples per input sample factor: 
// update old index for next time: 
idx0 = idx0_next; 
out1 = stp; 
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2.7 [gen~] Physical Model Buffer Poker 

poker2.gendsp 
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2.8 [gen~] Physical Model Cross-Buffer Scattering 

buf_scat.gendsp 
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2.9 [gen~] Cartesian to Polar Audio Panning 

cartopol_pan.gendsp 
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2.10 [js] Iterated Physics Instance Setup Example 

ball.pe.ac_defaults.js 
 
var d = [ //c-count, s-scale, m-mass, p-phys, x-multiple, g-gridshape 
    "c 100", 
    "s 0.05 0.05 0.05", 
    "m mass 55", 
    "p rolling_friction 0.5", 
    "p restitution 1.5", 
    "p shape sphere", 
    "g shape sphere", 
    "g dim 20 20", 
    "g poly_mode 0 0", 
    "g lighting_enable 1", 
    "g color 0 .6 1 1", 
    ]; 
 
function bang() 
{ 
    for (var i = 0; i < d.length; i++) 
    { 
        outlet(0, d[i]); 
    } 
}
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2.11 [js] Iterative Impulse Generator Setup 

impulse_presets.js 
 
inlets = 1; 
outlets = 4; 
 
var i = 0; //counter 
var c = 1000;  //max count 
 
var l = [ //amplitude functions 
 "1. 0. 0. 20.", 
 "1. 5. 0. 15.", 
 "1. 10. 0. 10.", 
 "1. 15. 0. 15.", 
 "1. 20. 0. 0." 
]; 
 
var r = [.5, 1, 2, 3, 4, 5, 7.5, 10, 15, 20]; //resonance values 
 
 
function reset(b) {  //reset 
    i = 0; //reset counter 
    c = b; //set max count 
} 
 
function bang() { //iterate toward max count on bang 
    if (i < c) { 
        start(i); 
    }; 
    i = i + 1; 
} 
 
function start(v) { 
    z = trunc(v / 1000);  //thousands place 
    y = (trunc(v % 1000 / 100)); //hundreds place 
    x = trunc(v % 1000 % 100); //tens and ones place 
    outlet(3, (z * 1000 + y * 100 + x)); //index 
    outlet(2, r[y]);   //resonance 
    outlet(1, Math.pow((x / 2), 2) * 5 + 40); //frequency 
    outlet(0, l[z]);   //line function 
} 
 
function trunc(number) { //truncate right of decimal 
    return number > 0 
         ? Math.floor(number) 
         : Math.ceil(number); 
} 
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2.12 [maxpat] Iterative Impulse Generator Patch 

impulse_generator.maxpat 
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2.13 [maxpat] Hydra Input Parsing 

hydra_input.maxpat 
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2.14 [maxpat] Hydra Parameter Routing 

hydra_routing.maxpat 
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2.15 [maxpat] Update Clocks 

clocks.maxpat 
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2.16 [maxpat] Oculus Headset Rendering 

oculus.maxpat 
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2.17 [maxpat] Third-Person Camera Rendering and Post-Processing 

monitor.maxpat 
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2.18 [maxpat] Slab Spell 

slab-make.maxpat 
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2.19 [maxpat] Permanent Instance Creator 

permanent_create.maxpat 
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2.20 [maxpat] Slab Audio Generator 

slab_audio.maxpat 
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2.21 [maxpat] Sword Spell 

sword.maxpat 
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2.22 [maxpat] Spell checker and router 

spell_maker.maxpat 
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2.23 [js] Global Parameter Initialization 

initParams.js 
 
function bang() { 
    //Spells 
    messnamed("reload_spells", "bang"); 
    //Controllers 
    messnamed("udp_input", "port 7022"); 
    messnamed("udp_input", "maxqueuesize 1024"); 
    //Body 
    messnamed("hand_speedlim", 5); 
    messnamed("foot_adjust", "bang"); 
    messnamed("leg_wiggle_toggle", 1); 
    messnamed("breathing_toggle", 1); 
    messnamed("recenter_headset", "bang"); 
    messnamed("RH-target_shape_up", .05); 
    messnamed("RH-target_shape_up", "bang"); 
    messnamed("LH-target_shape_up", .05); 
    messnamed("LH-target_shape_up", "bang"); 
    messnamed("RH-force_shape_up", 0); 
    messnamed("RH-force_shape_up", "bang"); 
    messnamed("LH-force_shape_up", 0); 
    messnamed("LH-force_shape_up", "bang"); 
    //Shader processing 
    messnamed("slide_blur", "2 2"); 
    //World  
    messnamed("worldbox", "enable 1"); 
    messnamed("worldbox", "gl_color 0 0 0 1"); 
    messnamed("camera_preset", 0); 
    messnamed("ground_enable", 1); 
    messnamed("init_permanents", "bang"); 
    messnamed("main-light", 1.); 
    messnamed("main-light", "bang"); 
}
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2.24 Unity OSC Interface, Based on Jorge Garcia Martin’s UnityOSC 

//   UnityOSC - Example of usage for OSC receiver 
//   Copyright (c) 2012 Jorge Garcia Martin 
//    Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated  
//    documentation files (the "Software"), to deal in the Software without restriction, including without limitation 
//    the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,  
//    and to permit persons to whom the Software is furnished to do so, subject to the following conditions: 
//    The above copyright notice and this permission notice shall be included in all copies or substantial portions  
//    of the Software. 
// 
//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED  
//    TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 
IN NO EVENT SHALL  
//    THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER 
IN AN ACTION OF  
//    CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 
USE OR OTHER DEALINGS IN THE SOFTWARE. 
 
using UnityEngine; 
using System; 
using System.Collections; 
using System.Collections.Generic; 
using System.Text; 
using UnityOSC; 
 
public class oscControl : MonoBehaviour { 
  
 private Dictionary<string, ServerLog> servers; 
  
 void Start() { // Script initialization 
  OSCHandler.Instance.Init(); //init OSC 
  servers = new Dictionary<string, ServerLog>(); 
 } 
 
 void Update() { 
  OSCHandler.Instance.UpdateLogs(); 
  servers = OSCHandler.Instance.Servers; 
  foreach( KeyValuePair<string, ServerLog> item in servers ){ 
   // If we have received at least one packet, 
   // show the last received from the log in the Debug console 
    if(item.Value.log.Count > 0) { 
     int lastPacketIndex = item.Value.packets.Count - 1; 
     UnityEngine.Debug.Log(String.Format("SERVER: {0} ADDRESS: {1} VALUE 0: {2}",  
                                      item.Key, // Server name 
                       item.Value.packets[lastPacketIndex].Address, // OSC address 
                       item.Value.packets[lastPacketIndex].Data[0].ToString()));  
       //First data value 
     } 
      } 
  } 
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